Insights into the role and mechanism of the AAA+ adaptor ClpS

نویسندگان

  • Jennifer Yuan Hou
  • Tania A. Baker
چکیده

Protein degradation is a vital process in cells for quality control and participation in regulatory pathways. Intracellular ATP-dependent proteases are responsible for regulated degradation and are highly controlled in their function, especially with respect to substrate selectivity. Adaptor proteins that can associate with the proteases add an additional layer of control to substrate selection. Thus, understanding the mechanism and role of adaptor proteins is a critical component to understanding how proteases choose their substrates. In this thesis, I examine the role of the intracellular protease ClpAP and its adaptor ClpS in Escherichia coli. ClpS binds to the N-terminal domain of ClpA and plays dual roles in ClpAP substrate selectivity: ClpS inhibits the degradation of some substrates such as ssrA-tagged proteins and enhances the degradation of other substrates such as N-end-rule proteins. We wished to elucidate how ClpS influences ClpAP substrate selection, and found that the stoichiometry of ClpS binding to ClpA is one level of regulation. Furthermore, we demonstrated that the N-terminal extension of ClpS is vital for the adaptor’s role in delivering N-end-rule substrates to ClpAP for degradation, but this extension is not required for inhibition of ssrA-tagged proteins. Truncation studies of the ClpS N-terminal extension showed a dramatic length-dependence on Nend-rule protein delivery, and the chemical composition of this portion of ClpS also affected the ability to degrade N-degron-bearing substrates. Evidence suggests that ClpS allosterically affects the ClpA enzyme, causing a modulation in substrate specificity, and preliminary studies localized the point of contact by the ClpS N-terminal extension to the ClpA pore region. ClpS therefore represents a new type of adaptor protein that modulates substrate selection allosterically, rather than simply recruiting and tethering substrates to the protease. To further understand the role of ClpS and ClpAP in the cell, we conducted a proteomic-based search for ClpS-dependent ClpAP substrates. A list of putative substrates was generated from these experiments, and we believe that ClpAP plays a key role in quality control, perhaps through the degradation of N-end-rule substrates. Combined with mechanistic studies, these physiological studies aid in the understanding of how ClpS influences substrate recognition by ClpAP. Thesis Supervisor: Tania A. Baker Title: E. C. Whitehead Professor of Biology

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ClpS modulates but is not essential for bacterial N-end rule degradation.

In eubacteria, the ClpS adaptor has been proposed to be essential for degradation of N-end rule substrates by the AAA(+) protease ClpAP. To test this model, we assayed degradation of substrates bearing N-end rule sequences isolated in a genetic screen for efficient degradation tags. ClpS was not vital for degradation in vivo but rather stimulated turnover in a sequence-specific manner. Although...

متن کامل

Emerging insights into the biology of metastasis: A review article

Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, ...

متن کامل

Molecular basis of substrate selection by the N-end rule adaptor protein ClpS.

The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate...

متن کامل

Computational insights into fluconazole resistance by the suspected mutations in lanosterol 14α-demethylase (Erg11p) of Candida albicans

Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance.  Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Pro...

متن کامل

New Insights into the Effect of Diabetes and Obesity in Alzheimer’s Disease

Abstract Alzheimer’s disease (AD) is the most common cause of dementia in elderly people. The prevalence of Alzheimer diseases is increasing in the world due to population aging. Metabolic disease such as diabetes and obesity play important role in Alzheimer disease. Hyperglycemia can play important role in brain damage. It causes cognitive impairments, functional and structural alterations in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009